Calmodulin mediates brain-derived neurotrophic factor cell survival signaling upstream of Akt kinase in embryonic neocortical neurons.

نویسندگان

  • Aiwu Cheng
  • Shuqin Wang
  • Dongmei Yang
  • Ruiping Xiao
  • Mark P Mattson
چکیده

As a calcium-sensing protein, calmodulin acts as a transducer of the intracellular calcium signal for a variety of cellular responses. Although calcium is an important regulator of neuronal survival during development of the nervous system and is also implicated in the pathogenesis of neurodegenerative disorders, it is not known if calmodulin mediates these actions of calcium. To determine the role of calmodulin in regulating neuronal survival and death, we overexpressed calmodulin with mutations in all four Ca(2+)-binding sites (CaM(1-4)) or with disabled C-terminal Ca(2+)-binding sites (CaM(3,4)) in cultured neocortical neurons by adenoviral gene transfer. Long-term neuronal survival was decreased in neurons overexpressing CaM(1-4) and CaM(3,4), which could not be rescued by brain-derived neurotrophic factor (BDNF). The basal level of Akt kinase activation was decreased, and the ability of BDNF to activate Akt was completely abolished in neurons overexpressing CaM(1-4) or CaM(3,4). In contrast, BDNF-induced activation of p42/44 MAPKs was unaffected by calmodulin mutations. Treatment of neurons with calmodulin antagonists and a phosphatidylinositol 3-kinase inhibitor blocked the ability of BDNF to prevent neuronal death, whereas inhibitors of calcium/ calmodulin-dependent protein kinase II did not. Our findings demonstrate a pivotal role for calmodulin in survival signaling by BDNF in developing neocortical neurons by activating a transduction pathway involving phosphatidylinositol 3-kinase and Akt. In addition, our findings show that the C-terminal Ca(2+)-binding sites are critical for calmodulin-mediated cell survival signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P22: The Association between TrkB Signaling Pathway and NMDARs in LTP Induction

Long-term potentiation (LTP) is a biological process of learning and memory after a high-frequency train of electrical stimulations. By binding of brain-derived neurotrophic factor (BDNF) to Tropomyosin receptor kinase B (TrKB) receptors in postsynaptic neurons, tyrosine kinase Fyn is bound to these receptors and hereby plays a mediating role to binding and activation of N-methyl-D-aspartic aci...

متن کامل

Telomerase mediates the cell survival-promoting actions of brain-derived neurotrophic factor and secreted amyloid precursor protein in developing hippocampal neurons.

Telomerase, a reverse transcriptase that maintains chromosome ends (telomeres) during successive cell divisions in mitotic cells is present in neuroblasts and early postmitotic embryonic neurons but is absent from adult neurons. The signals that control telomerase levels during development are unknown, as are the functions of telomerase in developing neurons. We now report that telomerase activ...

متن کامل

The Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment

Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...

متن کامل

Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway.

Brain‑derived neurotrophic factor (BDNF) has been demonstrated to be a potent growth factor that is beneficial in neuronal functions following hypoxia‑ischemia (HI). Mature BDNF triggers three enzymes, mitogen‑activated protein kinase (MAPK), phosphatidylinositol 3‑kinase (PI3K) and phosphoinositide phospholipase C-γ (PLCγ), which are its predominant downstream regulators. The PI3K‑Akt signalin...

متن کامل

The Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment

Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 9  شماره 

صفحات  -

تاریخ انتشار 2003